
ROBOCUP RESCUE 2018 TDP COLLECTION 1

RoboCup Rescue 2018 Team Description Paper
MIT Robotics Team

Nadya Balabanska, Lukas Lao Beyer, Drew Beller, Mario Lopez, David Mayo, Joshua Piel, Michelle Tan,
and Eyob Woldeghebriel

Info

Team Name: MIT Robotics Team
Team Institution: Massachusetts Institute of Technology
Team President: Drew Beller
Team Technical Lead: David Mayo
Team Faculty Advisor: Russ Tedrake
Team URL: https://roboteam.mit.edu

RoboCup Rescue 2018 TDP collection:
https://robocup-rescue.github.io/team description papers/

Abstract—This paper encloses details about the MIT Robotics

team’s planned submission into the RoboCup Rescue 2018 Chal-

lenge. The team focused on building a robust semi-autonomous

system that seamlessly aids the operator in controlling the robot

and sends back important mapping and vision data needed in a

first responder situation. The team took advantage of high-end

sensors and robotic equipment to explore the limits of what is

possible in robotic disaster relief today.

Index Terms—RoboCup Rescue, Team Description Paper, MIT

Robotics Team, Disaster Relief, Robot.

I. INTRODUCTION

T

HE goal of the MIT Robotics Team is to create a robust
search and rescue platform that utilizes semi-autonomous

functionality to aid the operator. We seek to take advantage of
high end sensors and robotic equipment to push the boundary
of what is capable by traditional tele-operated control. We
believe this hybrid human-computer semi-autonomous system
will improve performance of search and rescue robots in both
their speed in completing tasks and the variety of tasks the
robot is able to complete.

II. SYSTEM DESCRIPTION

A. Hardware

Refer to Table IV in the Appendix.
1) Drive System and Chassis: We are using the HD2

Chassis from Super Droid Robotics. The HD2 Chassis is a
robust belt-driven chassis capable of supporting the weight
of our arm and sensors over a variety of difficult terrains.
To account for even more difficult terrains, the team will be
adding flippers on the front of the chassis to aid in the traversal
of obstacles taller than the chassis.

The MIT Robotics Team works out of the MIT Edgerton Center, e-mail:
roboteam-exec@mit.edu.

Fig. 1. Robot in expected final assembly configuration. The arm is folded
back for storage and navigation.

2) Arm and Manipulator: We are using the Harris Red-
Hawk MPR robotic arm (see Table II for more details). The
six degrees of freedom the manipulator provides, combined
with the custom hardware we are developing for the end
effector, will be effective at completing manipulation tasks.
The arm is capable of precise motion reaching about 1-1.5 m in
every direction, while maintaining an end effector positioning
accuracy of about ±2 mm.

For the end effector, we have developed our own custom
gripper for the arm and we have already developed a custom
PCB to interface with the arms internal wiring. The RedHawk
MPR provides Ethernet on its tool interface connector. Our
custom end effector electronics contain a single-board com-
puter running Linux, which will make it possible to interface
with sensors and actuators on the end effector. Additionally,
the custom hardware contains multiple switch-mode voltage
regulators and provides power for the embedded computer (5V
and 3.3V), servos and other actuators (12 to 15V configurable)
and high power LEDs (using a constant current driver). To
communicate with sensors, we have included an ARM Cortex
M4 microcontroller and the necessary circuitry for RS232,



ROBOCUP RESCUE 2018 TDP COLLECTION 2

Fig. 2. CAD model of the end effector electronics (top: shows underside
of electronics that will be facing the arms tool end; bottom: shows the top
side of electronics, which will be facing the gripper. 40 pin header, CO2 and
thermal connectors visible)

RS422 and RS485 serial interfaces. Mechanically, our end
effector electronics are mounted in an almost fully enclosed
cylindrical shell that attaches to the arms tool end. The only
exposed components are a 40 pin header connector, a CO2 gas
sensor, an analog video input connector, and a thermal camera
interface.

The most useful connections are broken out to the conve-
nient 40 pin header on the tool end of our custom electronics.
The variety of interfaces and power rails provided on this
connector will enable the development of multiple end effector
designs, and provides the expandability required for adding
and experimenting with different sensor configurations.

See Figure 2.
3) Computer: The robot uses a full desktop computer

running Ubuntu 17.10 with ROS Lunar. The computer is
completely configurable and is set up with an external solid
state hard drive, a quad core i7 Intel processor and 16 GB
of RAM. We plan to add a Nvidia GTX-1060 to improve
performance in handling sensor data.

4) Sensors: Standard webcams will be used to send real-
time video feedback to the operator. A Hokuyo UTM-30LX

Fig. 3. Pioneer2Dx robot in one of the NIST standard test arena scenarios

LIDAR and a Zed RGB-D camera will be used for mapping,
localization, and path planning. A MG811 CO2 sensor will
also be mounted on the custom PCB for our end-effector. The
end effector will also include a FLIR Lepton thermal imaging
camera.

B. Software
Refer to Table V in the Appendix.
1) Low-Level Control: Low-level control of the robot sys-

tems will be managed via multi-threaded ROS topics. Com-
munications to and from the drive train will be handled over
serial RS-232. Communications to and from the arm will be
handled via Ethernet. The Hokuyo, Zed camera, IR camera,
and webcams will be connected directly to the motherboard
via USB.

Communication to the robot from the operator’s station
will be handled by a combination of UDP (User Datagram
Protocol) and TCP (Transmission Control Protocol) calls over
a single channel Wi-Fi connection. UDP will be used for teleop
control and direct video feedback, while TCP will be used for
less time sensitive data like map updates.

2) SLAM: Some of the most essential tasks for rescue
robots are to be able to both dynamically map terrain for rescue
responders and also to keep track of its location in order to
explore an area effectively. We are using Hector SLAM with a
Hokuyo UTM-30LX LIDAR in order to simultaneously local-
ize the robot’s position and create a map of its surroundings.
The software creates a probabilistic occupancy grid that shows
which areas are empty and which are occupied. In order to
test the mapping without the robot, we used Gazebo with the
Pioneer2Dx robot as shown in Figure 3.

In addition to the 2D SLAM from the Hokuyo, we have
implemented 3D mapping and localization for better obstacle
detection and avoidance as our robot traverses the rescue
terrain. We use the Zed camera to generate a point cloud of
our surroundings, and RTABMap to process the point cloud
into a 3D probabilistic occupancy grid. RTABMap is built on
top of the Octomap libraries, but has the additional benefit of



ROBOCUP RESCUE 2018 TDP COLLECTION 3

not needing external odometry since it is able to generate it’s
own odometry from scan matching.

3) Vision: The vision sensors on the robot include standard
RGB cameras on the arm base and manipulator, a fRGB-D
camera on the front of the robot, and a FLIR thermal camera
on the manipulator. Currently, we are able to detect QR codes
using image data from our robots RGB cameras and process
it using OpenCV.

We are also able to detect objects without artificial markers
using deep convolutional neural networks. We have created a
dataset of images of objects that a search and rescue robot may
need to be able to identify autonomously such as door handles,
fire extinguishers, valves, etc. We then used a technique called
transfer learning, which involved removing the final layer from
a convolutional neural network that had already been trained
on the ImageNet dataset (specifically the Google Inception v3),
rewiring it to classify images into the categories we choose
for our search and rescue image dataset, and then training the
network on our dataset. This method allows us to leverage the
power of the feature representations learned from training a
deep neural network on a large image dataset, while applying
them to classifying our new smaller dataset after only a small
amount of retraining. In practice, this technique yields a high
degree of accuracy.

In the future, we plan to expand our dataset to be able to
detect a larger number of obstacles. We also plan to implement
algorithms to utilize 3D point clouds created by our RGB-
D camera to detect obstacles and identify open spaces. For
the RoboCup Rescue manipulation tasks we plan to use deep
neural networks to detect objects that we need to grasp with
our arm. To detect the specific orientation and position of
markers on objects, we will be using more feature-specific
algorithms.

4) Path Planning: The global map and point cloud data
from the Zed camera will be used to plan the best path
around obstacles. Obstacle avoidance will occur autonomously
as the operator simply drives in the desired direction. When
the flippers are added onto the drive train, the path planning
will utilize them to navigate over obstacles, by setting their
optimal angle for traversing over what is ahead of the robot.
Development of this feature has already begun in simulation.

5) Manipulator Control: The MoveIt! motion planning
framework ([1]) was chosen for performing path planning for
the manipulator. This makes it possible for the operator to pick
an arbitrary goal pose and have the arm move autonomously
performing inverse kinematics. Obstacle avoidance to pre-
vent interference of the arm’s joints with the real world is
performed, which will be helpful for pick-and-place tasks.
Additionally, we have extended MoveIt! to improve its path
planning capabilities, and our system is capable of moving its
end effector along arbitrary paths specified in 3D. This will
be helpful for tasks in which precise and repeatable motion
of the end effector is required, such as opening doors. The
operator can select from a range of predefined poses and paths,
and is also able to position the end effector in a 3D virtual
environment (see Figure 4).

Fig. 4. Manipulator control user interface

Fig. 5. Operator GUI

C. Communication
Communication between the robot and operator station oc-

curs via a single channel wireless network. The robot contains
an internal wired network used for interfacing with the robot
arm, internal Raspberry Pi, and sensors. This network is also
wirelessly connected to an outside access point, allowing com-
munication with the operator station through ROS. Feedback
and control data is sent as ROS messages between the operator
station the robot. The video feed is also transferred as uncom-
pressed image frames continuously updated at five Hz. We are
currently exploring further techniques for data compression,
reducing latency, and generally improving connectivity.

D. Human-Robot Interface
The robot may be driven by one driver via the control

interface. The interface is implemented as a rqt node, with
multiple plug-ins and provides a video feed from the on-board
cameras, a click-and-drag map, a ROS message monitor, and
a terminal. The GUI can be seen in Figure 5.

Control will be semi-autonomous. The operator will control
the direct the robot moves, but the robot will autonomously
path plan for obstacle navigation. Manipulation will utilize
inverse kinematics via MoveIT so that the operator can graph-
ically set overall position goals relative to the robot in space
that the arm will then perform (such as grasp an item, or place
an item), rather than direct control of individual joints.

On the outside of the robot chassis, a front panel is available
to help control various parts of the robot. Ports for accessing
the robot USB interface, display out, and charging the batteries



ROBOCUP RESCUE 2018 TDP COLLECTION 4

allow for easier use of the robot without removing the arm
to access the inside of the chassis. In addition, a small
touchscreen controlling a Raspberry Pi is present. This allows
convenient access to the Raspberry Pi, which can toggle power
to many essential components inside the robot as well as send
messages to the main robot computer. These features can also
be accessed remotely via webserver.

Overall, minimal training is required to control the robot.
Ideally, the operator should have practice with the system by
maneuvering over test obstacles and manipulating the arm to
feel comfortable with it.

III. APPLICATION

A. Set-up and Break-Down
The robot is a self-contained system. Any laptop/desktop

with the designated control software installed may be used as
the operation station.

1) Set-up:
• Remove screws on top, and top case with arm.
• Install charged batteries in chassis and arm.
• Close case, put back screws.
• Reconnect Ethernet to arm which comes out of near back

of robot.
• Close main power switch. Internal computer will be set

to automatically turn on and launch our system in ROS
to allow for control from the operator station.

• Connect drive and arm control joysticks to operator
station. Power on operator station.

• On the operator station, connect to the mission control
network; the robot computer will automatically connect
to this wirelessly.

• Launch the control interface on the operator station which
will communicate over the mission control network to the
robot.

2) Break-down:
• Use the control interface to reset the arm to the folded

position.
• Stop all nodes launched and stop roscore on the robot

computer.
• Robot may be safely powered down with main power

switch.
• Stop the control interface software.
• Shutdown the operation station.
• Remove and charge batteries in chassis and arm.

B. Experiments
1) Simulation: Testing in simulation has been very useful

for us. For SLAM Mapping, we had the robot drive around
in sample Robocup Rescue worlds from a simulation of NIST
standard test methods. We were able to create the map shown
in Figure 6.

The 2D map is helpful for simple areas, but to account for
3D features, we plan on using an RGB-D camera provide point
cloud data. Knowledge of the 3D features allows for more
efficient path predictions and for more successful obstacle
traversal. We plan on processing this into a 3D occupancy
grid using the RTABMap package.

Fig. 6. Map created with Hector SLAM

We have also been able to use simulation testing for the
development of path planning algorithms.

2) Old Platforms: We were able to take advantage robots
developed for past competitions to test parts of our software
and sensor stack before our drive train and chassis were
finished being assembled. This allowed us to identify the
differences between the simulation of our sensors and their
real actual performance. Taking advantage of our old platforms
has ultimately lead to faster software development and more
refined sensor data filtering and handling.

3) Physical Obstacles: To test the performance of our
hardware in conjunction with our software we have begun to
physically construct many of the RoboCup Rescue obstacles.
The specifications and instructions were taken from the 2011
NIST RoboCup Rescue Arena Assembly Guide [2] and the
results can be seen on YouTube here.

C. Application in the Field
By engaging in this project, we have produced a durable

robot currently capable of navigating uneven terrain and per-
forming complex arm manipulations with relative ease. With
further improvements, our system will be useful in a search
mission exploring unknown territories, relaying sensory data
to investigators. Additionally, the individual design of com-
ponents being developed, such as the arm end-effector, pose
utility on their own, each helping responders to understand and
react to their environment independent of our specific robot.
We still require development to ensure our robotics system is
mechanically and electrically robust and that the interface will
convey meaningful feedback to the human operators. We are
looking forward to future field tests to ensure this.

IV. CONCLUSION

The team is making good progress with our development.
Our system is fully operable under teleop control and develop-



ROBOCUP RESCUE 2018 TDP COLLECTION 5

TABLE I
DRIVE SYSTEM

Attribute Value
Name MITBot
Locomotion tracked
System Weight 35 kg
Typical operation size 0.5 x 0.8 x 0.4 m
Startup time (off to full operation) 5 min
Power consumption (idle/ typical/ max) 120 / 270 / 520 W
Battery endurance (idle/ normal/ heavy load) 260 / 120 / 60 min
Maximum speed (flat/ outdoor/ rubble pile) 4 / 4 / 2 m/s
Payload (typical, maximum) 22/ 45 kg
Support: set of bat. chargers total weight 2 kg
Support: set of bat. chargers power 500W (100-240V AC)
Support: Charge time batteries (80%/ 100%) 90 / 120 min
Cost 2500 USD

ment to add more autonomous functionality is well under way.
Mechanically, everything has been designed and built except
our manipulator. All of the manipulator parts and the PCB
arrived this week and we expect assembly to be done shortly.

While the team has not competed in the the RoboCup Res-
cue Challenge before, we have a lot of experience competing
in similar competitions such as the NASA RASCAL RoboOps
Challenge, the NASA SRC Centennial Challenge, and the
UAE Robots for Good competition. These experiences have
taught us what it means to be competition ready, and the
team is prepared to prevent on-site problems through thorough
debugging. We also have experience traveling for competitions
and are aware of the extra preparation needed to ship a robot
and bring along any tools or extra parts we may need.

APPENDIX A
TEAM MEMBERS AND THEIR CONTRIBUTIONS

• Drew Beller Drive train lead
• David Mayo Vision lead
• Michelle Tan Navigation lead
• Jasmine Palmer Drive train lead
• Nadya Balabanska Vision lead
• Mario Lopez Mechanical lead
• Joey Muller Control GUI lead
• Lukas Leo Beyer Arm lead
• Eyob Woldeghebriel Mapping lead
• Joshua Piel Power/Electrical lead
• Yaseen Alkhafaji CAD
• Wei Wu Treasurer
• Tatsuya Daniel Fund-raising/Business lead

APPENDIX B
CAD DRAWINGS

• End Effector PCB Figure 2

APPENDIX C
LISTS

A. Systems Lists
• Drive System Table I
• Manipulation System Table II
• Operator Station Table III

TABLE II
MANIPULATION SYSTEM

Attribute Value
Locomotion tracked
System Weight 19.5kg
Typical operation size 0.66 x 0.96 x 0.24 m
Startup time (off to full operation) 1 min
Battery endurance (normal) 120 min
Payload (typical, maximum) 20/ 45 kg
Maximum operation height 1.3 m
Payload at full extend 9.1kg
Support: set of bat. chargers total weight 2 kg
Cost 35000 USD

TABLE III
OPERATOR STATION

Attribute Value
Name Mission Control
System Weight 1 kg
Weight including transportation case 1.5 kg
Transportation size .3 x .2 x .01 m
Typical operation size .3 x .2 x .2 m
Unpack and assembly time 1 min
Startup time (off to full operation) 1 min
Power consumption (idle/ typical/ max) 60 / 80 / 90 W
Battery endurance (idle/ normal/ heavy load) 10 / 5 / 4 h
Cost 1000 USD

B. Hardware Components List

See Table IV.

C. Software List

See Table V.

ACKNOWLEDGMENT

The authors would like to thank the MIT Edgerton Center
for providing the support and space for making our submission
possible. We would also like to thank our sponsors 5D
Robotics, MISTI-MIT Japan, MIT MechE, Council for the
Arts at MIT, MIT AeroAstro, and MIT EECS.

TABLE IV
HARDWARE COMPONENTS LIST

Part Brand & Model Unit Price (USD) Num.
Drive motors IG52-04 with Encoder 155 4
Drive gears N/A 0

Drive encoder N/A 0
Motor drivers Roboteq MDC 2460 395 1

Batteries K2 25.6V LiFePO4 360 2
Computing Unit GIGABYTE LGA1151 Intel Z170 ATX 150 1

WiFi Adapter Ubiquiti Networks Router (ER-X) 50 1
LIDAR Hokuyo UTM-30LX 4770 1

RGB-D Camera Zed RGB-D Camera 449 1
Cameras Logitech C930e 85 2

Infrared Camera FLiR Dev Kit 260 1
CO2 Sensor MG811 CO2 Sensor 35 1

Battery Chargers Smart Charger for 25.6 LiFePO4 50 2
6-axis Robot Arm Harris Redhawk MPR 35000 1

Drive Train Super Droid HD2 (Chassis and Drive Train only) 2500 1
Operator Laptop Any Laptop ? 1



ROBOCUP RESCUE 2018 TDP COLLECTION 6

TABLE V
SOFTWARE LIST

Name Version License Usage
Tensorflow 1.0 open Vision

Ubuntu 17.10 open System
ROS lunar BSD System

OpenCV 2.4.8 BSD Vision
Hector SLAM [3] 0.3.5 BSD 2D SLAM

octomap 1.8.1 BSD Probabilistic 3D Mapping
RTABMap ? BSD Probabilisitc 3D Mapping

Hector NIST Arenas Gazebo ? BSD Debugging
Image Transport 1.11.12 BSD Video Streaming

CV Bridge 1.12.4 BSD Communication
Gazebo 8.0.0 BSD Modeling

rqt 0.1.2 BSD GUI
Pioneer SDK P2-DX open Modeling

REFERENCES

[1] I. A. Sucan and S. Chitta, “MoveIt!” .
[2] A. Jacoff and S. Tadokoro, “RoboCup Rescue Arena Assembly Guide,”

, 2011.
[3] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible

and scalable slam system with full 3d motion estimation,” in Proc. IEEE
International Symposium on Safety, Security and Rescue Robotics (SSRR).
IEEE, November 2011.


