ROBOCUP RESCUE 2016 TDP COLLECTION

RoboCup Rescue 2016 Team Description Paper
Team GETbots (Germany)

Dirk Fischer, Béarbel Mertsching, Hossein Mirabdollah, Mahmoud A. Mohamed, Muhannad Mujahed,
Daniel Nickchen, and Mawe Sprenger

Info
Team Name: GETbots
Team Institution: Paderborn University
Team Leader: Dirk Fischer
Team URL: http://getwww.uni-paderborn.de/getbots

RoboCup Rescue 2016 TDP collection:
https://to-be-announced.org

Abstract—In this paper, we describe our approach for the
participation in the 2016 RoboCup Rescue League competition.
Two different robots will be deployed: (i) A P3-AT based platform
for autonomous operation, and (ii) a teleoperated platform based
on the Jaguar V4 for tasks requiring high mobility. Our software
architecture is based on the open source framework ROS [1][2]
and comprises various components such as SLAM, exploration,
visual victim detection and localization, etc. Many components
have been developed by students of GET Lab. We have been
testing and prototyping the components mainly in our simulation
environment SIMORE [3].

Index Terms—RoboCup Rescue, Team Description Paper,
Robot Control, Autonomous Exploration, 3D Mapping.

I. INTRODUCTION

GET Lab is an interdisciplinary research group at the
University of Paderborn with a research focus on cognitive
systems. The team GETbots was established in GET Lab in
2007. It comprises master and doctoral students from a variety
of disciplines. Its research objectives are related to autonomous
exploration of unknown environments, creation of environment
maps, search for victims and assessing their health situations,
simulation environments, user interface design, and robot
control architectures.

Since 2008 the team GETbots has successfully participated
in the RoboCup German Open competitions and achieved
numerous honors: second place in the overall competition in
2009, third place in 2008, 2011 and 2012, “Best in Class
Mobility” award in 2013 and 2014, and “Best in Class Ma-
nipulation” award in 2015. This year we have been enhancing
software components already used in previous years. In order
to deal with new challenges which might appear in future
events, we will incorporate recently developed features as there
are 3D mapping, 3D object detection and classification, multi
robot exploration, as well as intuitive control for teleoperated
robots.

Similar to the last competition, we plan to use two different
robots. The first one, called GETbot, is based on a P3-AT
platform from Mobilerobots [4] (see Fig. 1). The hardware
configuration of the robot is presented in table I in appendix

Fig. 1: Autonomous robot GETbot.

Fig. 2: Teleoperated robot GETjag.



ROBOCUP RESCUE 2016 TDP COLLECTION

B-A. Furthermore, we will deploy a robot with four articulated
arms called GETjag (see Fig. 2). The robot is highly mobile,
able to climb stairs, and perform grasping and inspection tasks
with a self-designed manipulator arm platform. The robot’s
configuration is listed in table II in appendix B-A.

A. Improvements to Previous Contributions

Our victim detection framework has used a combination of
thermal, visual and depth cues to detect victims. Currently,
we are working on increasing the reliability of our framework
and reducing false positives by applying an advanced object
detection algorithm. The new algorithm extracts human body
features (e.g. temperature, face, body, etc.) from different
sensors and uses the AdaBoost machine learning technique
[5] to detect victims.

During the last competitions, we basically had made use
of RGB-D data to analyze the structure of the underground
so that the traversable paths can be detected. Currently, we
are integrating new algorithms based on an RGB-D sensor for
3D object recognition, advanced obstacle detection and 3D
reconstruction. Taking 3D structures of the environment into
account will assist our robots to perform rescue operations
more efficiently.

In our previous software architecture, a hierarchical state
machine was used to control the behavior of our autonomous
robot. Nevertheless, using the state machine can give rise to
different difficulties. For instance, adding a new behavior or
additional constraints often involves modifying several states
and transitions. Hence, we currently work on using the idea of
goal oriented action planning [6] for the autonomous control
and decision making. We are confident that this will make our
autonomous system more flexible and easier to adapt to new
challenges.

II. SYSTEM DESCRIPTION
A. Hardware

1) RGB-D Sensors: Both of our robots are equipped with
an ASUS Xtion Pro Live depth camera producing RGB-D
data with a frame rate of up to 30 Hz. Recently, we have
purchased a Kinect V2 depth sensor and plan to replace one
of the Xtion cameras with it. As the Kinect V2 sensor conducts
depth measurements based on the time-of-flight principle and
has an RGB resolution of 1080p, it apparently produces more
accurate RGB-D data than the Xtion sensor working based on
the structured-light principle. Additionally, the Kinect V2 sen-
sor has a larger field of view both horizontally and vertically
as well as a larger detection range than the Xtion. Thus, we
expect to achieve enhancements in our 3D analysis module
(see II-B4 for details).

2) Camera Head: Each of the RGB-D cameras is mounted
on a pan-tilt unit, making it possible to achieve a larger field of
view around the robots. In addition to the RGB-D camera, the
camera head of the autonomous robot (see Fig. 3a) is equipped
with a thermal camera to detect heat emitted by victims. As
thermal and RGB-D cameras are mounted close to each other,
the images from both cameras can easily be aligned to detect
victims more reliably (see II-B4 for details).

(@ (b)

Fig. 3: (a) Camera head with thermal and RGB-D camera
used for victim search. (b) Gimballed laser scanner unit.

(@ (b)

Fig. 4: Self-designed robot arm with 6 degrees of freedom:
(a) Arm used for turning a valve. (b) Pipestar inspection.

3) Laser Scanner Unit: The SLAM module of our mapping
system is supported by a gimbaled laser scanner unit shown
in Fig. 3b. This unit enables a robot to obtain high resolution
3D scans of an environment as well.

4) Robot Arm: Our teleoperated robot is equipped with
a self designed robot arm (Fig. 4). The arm has 6 degrees
of freedom and can be used for manipulation and inspection
tasks.

B. Software

1) Control: Fig. 5 illustrates the scheme of inter-component
interactions in our autonomous rescue system. The SLAM
module is continuously updating the map of the environment.
In parallel the exploration module uses this map to determine
a path to the next optimal exploration target. The coordination
between different modules is currently done using a hierarchi-
cal state machine based on SMACH [7]. This master control
module requests a path from the exploration module and then
forwards the way points to the navigation module one by one.
In case that no path can be found, e.g. because a map is not yet
available, navigation is done by choosing a suitable fallback
behavior (see II-B3 for details).

While the environment is explored, the search for victims
can be enabled or disabled by the master control, depending
on which behavior the human operator selects before starting



ROBOCUP RESCUE 2016 TDP COLLECTION

Mapping Navigation
target

location

feedback

map path
request

victim
positions

Victim
Search

Fig. 5: Interaction of main software components (simplified).

the autonomous exploration. Whenever a possible victim is
detected, the position is passed to the master control in order to
decide whether to continue exploration or approach the victim
location for confirmation.

Modification and extension of a hierarchical state machine
can be quite complex and time consuming. Therefore, we
currently work on a replacement inspired by the idea of goal
oriented action planning [6]. The goal is to make the decision
making process flexible, scalable and easier to maintain. As a
result our system will be quickly adaptable to new challenges.

2) Exploration and Mapping: Our SLAM module generates
a 2D grid map by merging data coming from the robot
odometry, a laser range finder and an inertial measurement unit
(IMU). The SLAM core is based on the OpenKarto library [8].
A map generated by our system is shown in Fig. 6.

In order to explore an unknown environment, the map
generated by the SLAM module is passed to the exploration
module performing a frontier based exploration [9][10]. Here
the accessibility of frontiers is first checked using the Search-
Based Planning Library (SBPL) [11][12]. Afterwards we select
the next exploration target based on the robot’s characteristics
and the costs for reaching the target, including the character-
istics of the terrain (see II-B6).

Currently, we are extending our exploration and mapping
modules for the case of collaborative multi robots.

3) Navigation: Usually, a real world disaster environment is
partially or completely unknown and it may change over time.
In order to guarantee a safe navigation in such environments, it
is necessary to incorporate the sensory perceptions within the
motion planning and the control loop. By this means, robots
can detect environmental changes and re-plan dynamically to
reach a given goal safely. For this purpose, we use a reactive
obstacle avoidance navigation technique, which is developed
in our lab [13]. The developed method is, in general, based on
analyzing the structure of the environment and detecting free
spaces (gaps) where the robot fits in. Obstacle avoidance is
performed based on the configuration of obstacles between the
current robot location and the selected gap, where all obstacle
points are considered to compute the avoidance maneuver and
simultaneously drive the robot towards the gap. This method is
capable of driving a mobile robot in very dense and cluttered

Fig. 6: Map generated by our SLAM module; detected land-
marks are denoted by blue dots.

(a) (b)

Fig. 7: An experiment carried out using only the reactive nav-
igation module [13] in a very dense scenario; (a) Experimental
setup. (b) Path followed by the navigation method.

environments with smooth and safe trajectories (see Fig. 7).

Whenever the state machine is in the exploration state, the
robot has to drive towards a goal location received from the
frontier based exploration module. The path planner generates
the required path and the reactive navigation module is used
to follow this path, generating a suitable motion command.
When the robot reaches the given goal, the reactive navigation
informs the path planner and waits for a new path. However,
while driving towards the goal, the victim search module may
announce the possibility of a victim (e.g. detecting a thermal
signature of a victim). In such a case, the state machine
switches over to “Target Homing” state. A variant of the
reactive navigation method discussed above [14] is used to
reach the assigned victim location. As soon as the robot is
close enough, it stops and requests a confirmation from the
operator.

In case that no path is received from the path planner (e.g. at
the starting of the rescue mission where the map is not created
yet), another module, wander around, is used to control the



ROBOCUP RESCUE 2016 TDP COLLECTION

(2) (b)

Fig. 8: Recovery behavior module: (a) Experimental setup,
(b) Expected behavior.

Fig. 9: Victim detection using thermal and video images.

robot. For this purposes, we use a modified version of our
method proposed in [15]. The key idea here is to guide the
robot towards free gaps while avoiding obstacles. A higher
priority is given to gaps located in front of the robot in order
to penalize moving backwards. This approach is especially
suitable for maze-like environments.

In some situations the robot can get stuck (e.g. after sliding
over a ramp and crashing against a wall). In such situations,
a recovery behavior is activated, which tries to drive the
robot towards a safe location. Once succeeded, the navigation
module can take over again. Our self-developed recovery
behavior drives the robot by setting several consecutive motion
commands based on the robot’s shape and the structure of the
environment (see Fig. 8).

4) Victim Search: The main target of the robot at the
RoboCup is to find simulated victims. In the last RoboCup
competitions, we started to replace our old victim detection
algorithm [16] with a new algorithm which is faster and
more robust. The old victim detection algorithm requires more
processing time to search victims, necessitating the robot to
stop driving occasionally in order to process captured images.
In the new algorithm, the robot searches victims while driving
and detects signs of life (e.g. human body temperature, skin
color, and motion). For this purpose, the robot uses a thermal
camera to automatically detect human body temperature and
generate a list of victim hypotheses. Consequently, visual and
depth data from the RGB-D camera is used to validate the
hypotheses. The validation is done by searching for skin color,
holes, motion and human body features within the regions of
interest identified in thermal images. To achieve this purpose,
the cameras are calibrated and the images are registered (see
Fig. 9). This method allows the robot to estimate the victim
position and localize victims in the map.

5) OR-Code and Hazmat Symbol Detection: During the
mission, the captured RGB images are used to detect QR-

Fig. 10: QR-code and hazmat symbol detection.

Fig. 11: Terrain map classifying the underground and marking
obstacles. In the center a bidirectional ramp is classified as
more difficult (darker) than flat ground (light gray).

codes and hazmat symbols (see Fig. 10). Recently, we started
to design a new system which uses a multi-camera setup
for the detection of QR-codes and hazmat symbols. For the
detection of hazmat symbols, we developed a method which
extracts bag-of-features based on the SIFT descriptor. The
classification of hazmat symbols is implemented using the
support vector machine (SVM). The classifier is trained using
some known hazmat symbols. For each detected object (QR-
code or hazmat symbol), the 3D position is calculated and the
location is plotted on a 2D map.

6) 3D Processing: In the last competitions, we started
processing three-dimensional data. RGB-D data is used to
generate a 2.5D height map. The structure of the underground
is analyzed based on the geometrical relationship of neighbor-
ing height cells to generate a trafficability map. In this way,
we do not only distinguish walls and floor, but also certain
difficulties for different undergrounds and detect obstacles and
non-drivable passages that are not detected by the laser range
finders (see Fig. 11).

Recently, we came up with a new module for 3D object
recognition and tracking based on depth images. We make
use of a real-time segmentation algorithm proposed in [17] to
cluster a depth image and recognize objects by partial views
stored in a database (see Fig. 12). This database is initially
generated offline, but it can dynamically be updated online as
well. The recognized objects are tracked as long as they are
visible and used for further processing by other modules of
our system.



ROBOCUP RESCUE 2016 TDP COLLECTION

Fig. 12: Real-time segmentation for clustering a depth image
(left) and object detection based on partial views (right).

Fig. 13: Partial reconstruction of a RoboCup arena based on
RGB-D data.

In the RoboCup German Open 2015, a new challenge in
form of soft obstacles (vertically hanging elastic strips) was
introduced. The robot had to recognize these kind of obstacles
in order to drive through them. We are currently working on
algorithms using depth information to detect potential soft
obstacles based on depth discontinuities and edge detection.
The potential soft obstacles become validated by adding a
new behavior where the robot moves cautiously towards the
obstacles. If the robot can move through the obstacles they are
marked as soft obstacles; otherwise they will be determined
as hard obstacles (see II-B1).

In addition to the 2D mapping based on laser data, a module
for dense 3D reconstruction based on RGB-D data is currently
under development. We make use of the InfiniTAM V2 method
[18] to register depth images in real-time and adapt it to the
usage for large-scale arena-like environments (see. Fig. 13).
Furthermore, we are working on loop detection and closing as
an extension to the algorithm. This aspect is especially difficult
to solve as RoboCup arenas basically consist of wooden parts
with similar textures and rectangular structures.

7) Autonomous Flipper Control: The four articulated robot
arms (flippers) of our GETjag robot (see Fig. 2) are currently
controlled manually by the operator because controlling the
speed and direction of the robot and two pairs of flippers
simultaneously needs complex and demanding control rules.
Nevertheless, control by an operator raises also another diffi-
culty: the operator perceives the environment through a camera
which yields only a limited field of view. Hence, we are

developing an autonomous control system to rotate the flippers
according to the structure of the underground. To this end, a
local height map around the robot will be taken into account
based on a 3D map reconstructed over time. Up to now the
autonomous control system has only been used and tested
in the simulator because our 3D reconstruction module is
currently under development. As soon as the 3D reconstruction
is running, the control system can easily be integrated to
autonomously control the flippers and disburden the operator.

C. Communication

We use wireless LAN 802.11a/b/g. Channels and power are
selectable as follows:

Rescue Robot League
GETbots (Germany)

Frequency Channel/Band Power
5.0 GHz 802.11a selectable selectable
2.4 GHz 802.11b/g | selectable selectable

D. Human-Robot Interface

A graphical user interface has been developed using the
cross-platform application framework Qt [19]. To percept
the status of each robot and to control the behavior, data
coming from different sensors and processing units can be
visualized. Furthermore, it is possible to control devices such
as a robot arm remotely. The communication between robots
and operator interface is based on ROS messages [20]. Fig.
14 depicts a screenshot of the interface.

The operator is able to monitor multiple robots at the same
time. The number of robots is not limited and robots can be
added or removed during runtime. Additionally, the operator
can easily adjust the view for each robot to fit his needs.
Robots in teleoperated mode are controlled using an off-the-
shelf joypad.

For a fully autonomous robot, the autonomous exploration
mode should be started by the operator. He can also switch the
view to control a teleoperated robot. Each time an autonomous
robot detects a potential victim, this incident is reported to the
operator and a victim confirmation view is available to handle
this event.

At the end of a mission the generated grid map containing
victim and landmark positions can be saved to a storage
device.

III. APPLICATION

A. Set-up and Break-Down

Our equipment includes the robots, a laptop and joystick
to operate the robots, a wireless access point, and a battery
backup unit to ensure autonomous electricity supply. The
whole equipment is transported to the operator station on a
transport cart. Our experiments have shown that setup and
break-down can be easily accomplished in a couple of minutes.



ROBOCUP RESCUE 2016 TDP COLLECTION

Fig. 14: Graphical operator interface.

Fig. 15: SIMORE Simulation: Virtual GETbot operating in a
RoboCup Rescue arena (left) and an indoor corridor (right).

B. Mission Strategy

We are going to use our two robots in parallel. While the
autonomous robot is searching for victims, the operator can
concentrate on exploring the orange and red parts of the arena.
In this regard, he will monitor the autonomous robot and react
whenever the autonomous robot detects a victim.

C. Experiments

Simulation has proven to be an auxiliary tool in the design
and testing of new robot models as well as developing and
evaluating a range of algorithms to run on mobile robot
platforms. Especially when limitations in hardware, specific
environments or time have to be considered, virtual prototyp-
ing can be a beneficial addition compared to solely testing the
software in a “real” environment.

The GETbots team deploys the 3D simulation software
SIMORE [3] to overcome the aforementioned limitations.
Launched as a student project in our lab in 2006, SIMORE was
enhanced within the following years and is now supporting the
software development of our team (Fig. 15). SIMORE is based
upon open source libraries such as OpenSceneGraph [21] for
its rendering engine, and the Open Dynamics Engine [22] for
the dynamics simulation.

It supports different types of actuators and sensors. These
include e.g. pan tilt units and robotic manipulators, laser range
finders, RGB-D cameras, as well as thermal cameras. ROS
bindings are available also. We designed individual mazes like
test arenas furnished with the typical RoboCup elements such
as ramps, step fields and stairs.

For experiments with our real robots, we are using both

Fig. 16: Arena-like experimental setup with RoboCup ele-
ments including ramps, a stepfield and a tunnel.

individual experimental setups such as the one shown in Fig.
7a and a small arena with RoboCup elements (see Fig. 16).

D. Application in the Field

The focus of our team is developing algorithms and software
which can be applied for real rescue operations. Our available
platforms may not be fully appropriate for real scenarios. But
we are eager to prove that the algorithms can be adapted
easily to any platform which can move through disastrous
environments.

IV. CONCLUSION

We are going to deploy two robots in the 2016 RoboCup
Rescue League competition. The first robot (GETbot) works
in an autonomous mode and is supposed to explore large scale
arenas and detect victims. To this end, we have enhanced our
previous software components and furthermore developed new
modules to tackle problems for which the 3D structure of the
environment has to be considered. The second robot (GETjag)
is used in teleoperated mode. It is utilized to explore rough
terrain, grasp objects and do inspection tasks. Since operating
the GETjag is really challenging, we are developing a semi-
autonomous control system to disburden the operator.

APPENDIX A
TEAM MEMBERS AND THEIR CONTRIBUTIONS

o Birbel Mertsching

« Dirk Fischer

o Hossein Mirabdollah
e Mahmoud Mohamed
¢ Muhannad Mujahed
o Daniel Nickchen

o Mawe Sprenger

Management

System control, exploration
Mapping and localization
Victim search, image processing
Navigation, exploration

Terrain trafficability analysis
3D object recognition, operator



ROBOCUP RESCUE 2016 TDP COLLECTION 7
APPENDIX B B. Hardware Components List
LIsTS
TABLE IV: Hardware Components List
Part Brand & Model Unit Price | Num.
Platform Dr. Robot Jaguar-V4 EUR 13.000| 1
A. Systems List Platform Mobilerobots P3-AT EUR 6.000 | 2
Servomotors Dynamixel MX-106T EUR 493 1
Dynamixel MX-64T EUR 299 1
Dynamixel MX-28T EUR 219 7
Dynamixel AX-12A EUR 45 3
TABLE I: Autonomous Robot DC/DC TIPTN78020 usbD26 | 3
Batteries Conrad Energy EC5 EUR 99 3
Attribute Value Batteries Werker 12V 7.5Ah AGM EUR 30 12
Name GETbot Micro controller Arduino Pro Mini EUR 9.50 3
Locomotion wheeled Computing Unit GETjag | Mini ITX ASUS P8Z77-IDEL
System Weight 27.7 kg Intel Core i5-3570T
Size 0.53 x 0.48 x 0.78 m 8GB RAM
Startup time (off to full operation) 5 min 120 GB SSD EUR 550 1
Power consumption (idle/ typical/ max) 18/ 50/ 90 W Computing Unit GETbot ThinkPad X230 EUR 960 1
Battery endurance (idle/ normal/ heavy load) 240/ 90/ 30 min IMU XSens MTi EUR 1.600 | 1
Maximum speed 0.7 m/s IMU Tinkerforge IMU Brick EUR 60 1
Pay]oad (typica], maximum) 2/ 12 kg Camera iDS UI-1240ML EUR 400 1
Support: set of bat. chargers total weight 2 kg Camera Logitech HD Webcam C615 EUR 65 2
Support: set of bat. chargers power 115 W (230V AC) Depth Camera ASUS Xtion Pro Live EUR 130 2
Support: Charge time batteries (80%/ 100%) 3h/5h Infrared Camera FLIR Photon 320 EUR 6.700 | 1
Support: Additional set of batteries weight 2 kg Thermopile Melexis MLX90620 EUR 60 1
Cost EUR 22.530 LRF Hokuyo UTM-30LX EUR 4.200 1
LRF Hokuyo URG-04LX EUR 1.600 2
CO2 Sensor SenseAir K30 EUR 177 1
Battery Chargers TEnergy TB6AC EUR 50 1
6-axis Robot Arm Self-assembly EUR 1.200 1
Operator Laptop ThinkPad T430 EUR 1.300 1
TABLE II: Teleoperated robot
Attribute Value C. Software List
Name GETjag
Locomotion tracked / 4 flippers TABLE V: Software List
System Weight 33 kg
Transportation size 0.6 x 0.68 x 0.38 m Name Version | License Usage
Typical operation size 0.8 x 0.68 x 0.5 m Ubuntu 14.04 open
Unpack and assembly time 10 min ROS indigo BSD
Startup time (off to full operation) 5 min PCL [23] 1.8 BSD 3D object detection
Power consumption (idle/ typical/ max) 33/ 75/ 142 W ICL [17] 9.8 LGPL 3D object segmentation
Battery endurance (idle/ normal/ heavy load) 180 / 60 / 30 min InfiniTAM® v2 [18] | > 2.0 ISIS 3D mapping
Maximum speed (flat/ outdoor/ rubble pile) 1.4/ 1/ < 0.5 m/s OpenCV [16] 2438 BSD Victim detection, Hazmat detection
Carrying payload (typical/ maximum) 3/ 15 kg slam_karto 0.7.2 LGPL 2D mapping
Dragging payload (maximum) 50 kg ZBar 0.1 LGPL QR code detection
Arm: maximum operation height 95 cm Operator Interface 1.2 |closed source Operator station
Arm: payload at full extend <500 ¢g
Arm: sensors Thermopile / Camera
Telescope: height gain 15cm
Support: set of bat. chargers total weight 1 kg
Support: Charge time batteries (80%/ 100%) 3h/5h
Support: Additional set of batteries weight 1 kg
Cost EUR 17.114
TABLE III: Operator Station
Attribute Value
Name GETOp
System Weight 5 kg
Typical operation size 04x04x04m
Unpack and assembly time 1 min
Startup time (off to full operation) 1 min
Power consumption (idle/ typical/ max) 60/80/90 W
Battery endurance (idle/ normal/ heavy load) 10/5/4h
Power supply APC Back UPS BE700G 700VA
WLAN router ASUS RT-AC66U
Controller Logitech Gamepad F3101
Cost EUR 1.545




ROBOCUP RESCUE 2016 TDP COLLECTION

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[9]

[10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]
[23]

REFERENCES

“Robot Operating System,” 2016. [Online]. Available: http://www.ros.
org

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

O. Kutter, C. Hilker, A. Simon, and B. Mertsching, “Modeling and Simu-
lating Mobile Robots Environments,” in 3rd International Conference on
Computer Graphics Theory and Applications (GRAPP 2008), Funchal,
Madeira, Portugal, January 2008, pp. 335 — 341.

“High Performance All-Terrain Robot: Pioneer 3-AT Robot,”
http://www.mobilerobots.com/ResearchRobots/P3AT.aspx, 2016.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics, 2009.

J. Orkin, “Three States and a Plan: The A.I of FEE. AR, in Game
Developers Conference, 2006.

“SMACH: Architecture for Creating Complex Robot Behaviors,” 2016.
[Online]. Available: http://wiki.ros.org/smach

“OpenKarto GraphSLAM library,” 2016. [Online]. Available: https:
//github.com/skasperski/OpenKarto

B. Yamauchi, “A Frontier-based Approach for Autonomous Explo-
ration,” in In Proceedings of the IEEE International Symposium on
Computational Intelligence, Robotics and Automation, 1997, pp. 146—
151.

L. Freda and G. Oriolo, “Frontier-Based Probabilistic Strategies for
Sensor-Based Exploration,” in ICRA, 2005, pp. 3881-3887.
“Search-Based Planning Lab,” 2016. [Online]. Available: http://www.
sbpl.net

“Search-Based Planning Library,” 2016. [Online]. Available: https:
//github.com/sbpl/sbpl

M. Mujahed, D. Fischer, and B. Mertsching, “Smooth Reactive Collision
Avoidance in Difficult Environments,” in IEEE Conference on Robotics
and Biomimetics (ROBIO), Zhuhai, China, December 2015, pp. 1471 —
1476.

M. Mujahed, D. Fischer, and B. Mertsching, “Safe Gap Based (SG)
Reactive Navigation for Mobile Robots,” in European Conference on
Mobile Robots (ECMR), Barcelona, Spain, September 2013, pp. 325 —
330.

M. Mujahed, H. Jaddu, D. Fischer, and B. Mertsching, “Tangential
Closest Gap Based (TCG) Reactive Obstacle Avoidance Navigation for
Cluttered Environments,” in IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), Linkoping, Sweden, October
2013, pp. 1 - 6.

Z. Aziz and B. Mertsching, “Survivor Search With Autonomous UGVs
Using Multimodal Overt Attention,” in IEEE International Workshop on
Safety, Security & Rescue Robotics 2010, July 2010.

A. Uckermann, C. Elbrechter, R. Haschke, and H. Ritter, “3D Scene
Segmentation for Autonomous Robot Grasping,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
October 2012, pp. 1734 — 1740.

O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S. Torr, and
D. W. Murray, “Very High Frame Rate Volumetric Integration of Depth
Images on Mobile Device,” IEEE Transactions on Visualization and
Computer Graphics (Proceedings International Symposium on Mixed
and Augmented Reality 2015, vol. 22, no. 11, 2015.

“Qt cross-platform application framework,” 2016. [Online]. Available:
http://www.qt.io

“ROS Messages,” 2016. [Online]. Available: http://wiki.ros.org/
Messages

D. Burns and R. Osfield, “Open Scene Graph A: Introduction, B:
Examples and Applications,” in VR0O4: Proceedings of the IEEE Virtual
Reality 2004, 2004, p. 265.

“Open Dynamics Engine,” 2016. [Online]. Available: http://www.ode.org
R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in [EEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.



