
RoboCupRescue 2015 - Robot League Team

The EXPLORERS (CHINA)

AUTHORS: WangWei1, LiaoZhihan2, WangSheng3

EMAIL: WEI_NWPU@163.COM

TELEPHONE: +8618302976735

ADDRESS: Changan campus of Northwestern Polytechnical
University,Xi’an,China

1A junior at Northwestern Polytechnical University

2A sophomore at Northwestern Polytechnical University

3 A sophomore at Northwestern Polytechnical University

Abstract：
 We are the team named "THE EXPLORERS" from Northwestern

Polytechnical University. Our rescue robot can fulfill the task of step-
ping over the obstacles, mapping, autonomous navigation, and other
functions. It has achieved the basic purposes of urban search and res-
cue. Our Robot bases on Robot Open System, and ideas of our own
team were added. At the same time, the mechanical parts and circuits of
the robot are all designed independently by our team. We firmly be-
lieve that it will have a good performance in the game.

1. Team Members and Their Contributions

• WangWei Controller development
• ChenXiaojun Mechanical design
• Liangli Liuyuan Circuit design
• LiaoZhihan The software design
• WangSheng The software design
• ZuoPanfei Advisor
• LiaoZhihan Operator

2. Operator Station Set-up and Break-Down (10 minutes)

We need at least a table to put our two computers, one of them is
used for remote control and mapping, the other is used to display the
image that the camera sends back. We just need an operator.

First we need to check the machinery and circuit part of the robot. If
it has no problem, just open the power button of the robot, and connect
robots and computers through the network.

3. Communications

Rescue Robot League
THE EXPLORERS (CHINA)

MODIFY TABLE TO NOTE ALL FREQENCIES THAT APPLY TO YOUR TEAM

Frequency Channel/Band Power (mW)
5.0 GHz - 802.11a 5GHZ 500
2.4 GHz - 802.11b/g 2.4GHZ 500

4. Control Method and Human-Robot Interface

Control Method
This robot is mainly controlled by minicomputer which is provided

with some ROS packages for the robot .Before running this robot ,there
should be a WIFI opened by this minicomputer , then another computer
(control terminal) with ROS(or rqt) and control platform must connect
to this WIFI ，log on to minicomputer as a local administrator by the

SSH, after that , set the ROS_HOSTNAME to the host name of the
mini computer, then the operator would run on ROS packages build on
the minicomputer from the control terminal，later, some of the nodes
that we build in ROS would be activated , and each of them has its own
specific function (
navigation,arm_control,robot_move_control,flippers_control,image_dis
play......).After checking all of the nodes executive, the operator could
use the human-robot interface to public new topics, then there must be
some corresponding nodes to subscribe the topic, after the analysis,
these nodes would publish a new topic in ROS , if this topic is going to
send to the lower machine to control the robot , there would be a node
to subscribe these topics which based on CAN Protocol. Through the
node message will be sent from PC to the MCU and be resolved. In the
end, we control the action of the robot.

For our robot, there would be two controlling methods:
1. Remote teleoperation
The operator could publish some corresponding topics by the human-

robot interface to control some movable parts of the robot , then these
topics would be subscribed by some nodes , after the analysis , some
new topics would be published in ROS .A node based on CAN Protocol
would subscribe these topics.

2. Partial autonomy
There would be a disaster scene map on the human-robot interface,

the operator could set a goal on this map, then the ROS package--
navigation and AMCL would help the robot to reach the goal safely,
and at the same time that the robot move to the goal, operator could
send message to make robot stop or adjust the camera mounted on the
robot to view different disaster scenes.

3. Full autonomy
If the operator selected this mode, the ROS package gammaping

would help the robot to move safely by itself, at the same time the robot
is moving, the operator need not to send any missions. There would be
a real-time laser scanning map displaying on the window.
Human-robot interface

The human-robot interface is mainly based on the rqt which is a Qt-
based framework for GUI development for ROS, and we have also
added some plugins made by ourselves to this framework, it would run
on the control terminal.

So this GUI has the following functions:

1. Controlling module (after clicking specified buttons, operators
could send missions to make robot move by this module)

2. Real-time laser scanning map display (while the robot is moving,
the map would be changing synchronously)

3. Velocity settings (will be awaken when running navigation
package)

4. Camera display (which would get the real-time disaster scene
from the camera mounted on the robot)

5. Pose and status of robot (show status and pose of the robot
graphically)

6. A stage module (use the ROS package stage_ros , this will show
the robot in a occupancy grid map of the disaster scene)

5. Map generation/printing

As our robot is based on ROS, the robot would map automatically
with help of ROS package ---- gammaping, this package mainly use the
FastSLAM algorithm to generate map, which requires laser scanning
and odometry of robot, the FastSLAM algorithm starts with a random
distribution of particles. While the robot is moving, the particles and
odometry would be changed in real-time. After that, prediction of
measurements of the particle would be compared with the actual

measurements. Then the algorithm would assign each particle a weight
depending on how well its estimate of the state agrees with the
measurements. Finally, it would randomly draw particles from previous
distribution based on weights creating a new distribution.
 And during the same process, the operators could also change the
camera's perspective on the robot and get the view of the disaster scene
from the robot, if the operators found out the victims, he/she could
click buttons in the Qt control applications, the position would be noted
as red pixels in the final map.
 Besides, when we use rviz to fellow the whole process in our task,
our operator cold also record the necessary local map and the mapping
progress, which could let operator to identify mark victims and arena
features of different area when the robot is still working in the stage to
map.
 After the cycle several times in this algorithm, we could build an
occupancy grid map , in which the white pixels represent free cells, the
black pixels represent occupied cells , gray pixels are in unknown state
and the red pixels represent there may be a victim in that area .

6. Sensors for Navigation and Localization

Our robot is based on ROS, so the robot would use ROS package –
navigation and amcl, which requires laser scanning to navigate and
odometry to locate the position of robot. Put the 2D laser scanning on
the base link of the robot and put rotary encoder near the wheel joint of
robot.
 Before running the robot, we would set some parameters required by
this ROS package, such as the start angle of scan (min_angle), the end
angle of scan (max_angle), the time between measurements
(time_increment) ,the angular distance between measurements
(angle_increment) and the frequency(Hz). When the robot is working,
a node in ROS would get the return data from the laser scan, which
includes an array stores ranges. After the analysis of these ranges, this
node will also publish a new topic to change the pose or velocity of the
robot.

7. Sensors for Victim Identification

 We will use a camera fixed on the robot's arm to get the necessary
images from the stage to find victims. The image took by the camera
will be operated in the mini pc by four nodes and sent to the controller
terminal wirelessly. Our operator will in turn judge victims in images.
The victims' localization will be recorded in an array and be marked on
the global map.
 We will use four nodes provided by image_common which is a stack
provided by ROS. The node named camera_info_manager provides a
C++ interface for saving, restoring and setting camera calibration
information by a service named sensor_msgs/SetCameraInfo. The node
called camera_calibration_parsers contains routines for reading and
writing camera calibration parameters.
The node named polled_camera defines a ROS interface for requesting
images from a polling camera driver which include
camera_calibration_parsers and camera_info_manager. Polled_camera
will also publish two topics named sensor_msgs/Image and
sensor_msgs/CameraInfo, call service named
polled_camera/GetPolledImage. We will also use a node named
image_transport to change the format of the images such as JPEG to
PNG if necessary.

8. Robot Locomotion

 After completing the mechanical drawings in the SolidWorks, we
divide the mechanical drawings into some components, and add corre-
sponding joints between these components which could generate a
“.urdf” file in computer. Afterwards, we use the ROS package –
joint_state_publisher (reading the “.urdf” file and finding all of the non-
fixed joints and publishes a JointState message with all those joints
defined) and robot_state_publisher(computing and broadcasting the 3D
pose of each link in the robot) to display this robot in Rviz. If every-
thing is ok, we would add several plugins to this robot, for instance,
laser_sensor plugin and skid_steer_drive_controller plugin to make our
robot more completed. We use Gazebo to test the algorithm in these
packages, and simulate robot in the complex virtual disaster environ-
ment. This could give us a better suggestion to make improvements in
the mechanical design and the circuit design.

9. Team Training for Operation (Human Factors)

 For someone who wants to use our system for controlling robot, he
should make sure that he could meet the following requirements:

1. Briefly learning about our robot. He will know the function of our
robot and the parameters' effects to the robot, especially to the robot's
velocity.

2. Being familiar with the linux shell commend line operation and
could start the program by the commend line in terminal.

3. Understanding the laser scanning map, so he could control the
robot to move more safely and get useful and important information
returned by the camera and laser scan.

Of course, if the user wants to debug this robot by itself, it is recom-
mended that the user is skilled at ROS and simple electrical knowledge.

10. Possibility for Practical Application to Real Disaster Site

 After finishing the mechanical design, we build this robot accord-
ing to ROS's style, and use some necessary ROS packages to make the
robot's software more robust. By testing the robot using the method of
simulating complex virtual disaster environment in Gazebo, better ad-
vises could be given to make improvements in the mechanical design
thanks to the robust physics engine of Gazebo. With all the work above,
we could make sure that the mechanical is fully adjustable in the real
disaster environment.

11. System Cost

minicomputer: ￥3000
Hokuyo laser scanning: ￥7000
Mechanical parts: ￥50000
Circuit part: ￥5000
Camera: ￥1000
Others: ￥4000

12. Lessons Learned

References

